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Abstract The OPAL research reactor serves as a neutron source for diverse Neutron Beam Instruments 

(NBIs) undergoing commissioning throughout 2007 by The Bragg Institute of the Australian Nuclear Science 

and Technology Organisation (ANSTO) [1]. Port-based Systems Engineering (PBSE) using UML2.1.1[2] - 

and more recently SysML [3] with explicit physical flowport support - has been employed to support Model-

Based  Systems  Engineering  (MBSE)  of  NBIs,  including  reverse-  and  forward-engineering  of  Java 

components, and development of XML schemas for NBI hardware components and sensor-actuator device 

networks. Electronic systems, neutron flows, and vacuum systems are modelled as UML2 ports with custom 

notation and SysML flowports. The NBI models thus engineered are incorporated into a ModelServer system 

(implemented in Java+XML), which acts as a distributed, multi-client, control system façade that integrates 

low-level,  logical  device  interactions  (via  a  real  or   simulated control  system) into  high-level,  physical 

instrument block models that support recursive control [4] and derived, controllable, physical system values.
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1 Introduction

Low-level, device-centric modelling and control of scientific instruments - while useful in its own right - 

supports only basic instrument operation modes, and does not easily support advanced modelling of physical 

aspects of an instrument such as geometry, materials, relative motions, physical flows, or beam physics, and 

it does not enable developers to take advantage of the power of graphical systems engineering of physical 

component models of instruments.

In order to support physical simulation, animation, high-level subsystem logic, and recursive control [4] of 

derived  physical  values  and  complex  experimental  modes,  one  does  well  to  integrate  a  device-level 

electrical/logical view into a hierarchical, physical, component-based systems model with subordinate logical 

channels. I describe here how I have employed Model-Based Systems Engineering (MBSE) using UML2.1.1 

[2] (and more recently SysML1.0 [3]) to support such modelling and control of Neutron Beam Instruments  

(NBIs) of the OPAL research reactor at ANSTO [1], in particular exploiting control-, data-, and flow-ports to 

drive the modelling and development.

While  the  examples  are  taken  from  NBIs,  the  notations  and  modelling  principles  presented  here  are 

immediately applicable to a wide variety of scientific instruments and other systems engineering applications 
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Instances of the NBI models are served by The Bragg NBI ModelServer system, which can run in standalone 

simulation mode with dummy controllers, or via a networked control system to monitor and control NBIs 

live. The ModelServer is Java5-based [5], so UML modelling and notation conventions are tuned for Java.

The focus of this paper is on presenting practical ways to organise and present structural and diagramming 

aspects of port-based systems engineering models using UML, drawing on real-world experience modelling 

and  controlling  NBIs  at  OPAL[1].  Particulars  of  controlled  devices,  control  system injection,  recursive 

control, geometry, simulation, and animation will be the subject of future papers.

All modelling and UML engineering work presented here was performed with the Magicdraw UML1 tool 

(versions  11.0  through  12.5EAPbeta2)  and  its  developmental  SysML  plugin  (versions  1.0  through 

1.1EAPbeta2).

2 Port-based Systems Engineering (PBSE)

I  employ  the  term  Port-Based  Systems  Engineering  (PBSE) to  refer  here  to  a  type  of  MBSE where  a 

physical, electrical, or logical interpretation of ports is employed to drive and organise systems modelling 

and software engineering processes. This strategy lends itself immediately to the modelling of NBIs, where 

at least the following port categories can be identified:

1. Electrical and digital ports (control ports and data ports):  will be handled here as UML2 ports.

2. Physical access ports: such as feedthroughs for cables of electrical systems.

3. Vacuum system flowports: some neutron conditioning elements are enclosed by vacuum systems to 

reduce scattering of neutrons out of the beam.

4. Neutron beam flowports: the neutron beam can be modelled as flowing from a source (which in the 

case of OPAL is a research reactor [1]), through neutron conditioning elements (such as collimation, 

monochromation, pulsing, focussing), then through an interaction region (where the beam undergoes 

diffraction and/or reflection2 and/or transmission), and into a neutron detector and/or beam stop.

5. Environment flowports: for example, specific gases are introduced into the a volume containing the 

sample being studied to establish a controlled sample environment.

6. Radiation  ports: an  interpretation  of  physical  gaps  in  an  NBI  permitting  radiation  to  exit  the 

instrument, of interest to radiation surveys.

7. Light ports: porthole windows to enable examination of elements contained in vacuum regions.

It  will  be shown that  PBSE supports  different  viewpoints  of  an instrument,  of  which the neutron beam 

flowport viewpoint is the primary viewpoint for NBIs. For example, a beam-centric representation of the 

monochromation systems of the diffractometers at OPAL (Echidna, Wombat, and Kowari [1]) will be shown 

1 http//:www.magicdraw.com

2 Reflection here applies to reflectometry at low angles of incidence; back-scattering from a studied sample or neutron 

conditioning elements is not considered, although it may be of interest to – for example – radiation surveys.



to be differently ordered than one that emphasises the order of assembly of its components.

3 Notation and conventions

A significant  aspect  of  the  work presented  here  is  a  detailed  recipe  for  organising  systems  engineering 

models  and simulations,  which recipe is  supported  by notations,  conventions,  and diagramming recipes 

(some of which are tuned for use with Magicdraw UML). Readers are encouraged to take particular note of 

the block <<wrapper>> Component strategy and the use of navigation points to promote fluent systems 

diagramming, to the immediate benefit of a wide range of UML-based systems engineering modelling tasks. 

Attention to the introduction here of these notations and recipes will be rewarded by a better understanding 

of the examples of applications to the OPAL NBIs [1]that follow.

 3.1 Metaclasses and Stereotypes

Throughout this document nouns used as metaclasses of UML2 and SysML may be capitalised, including 

when used as plurals. Stereotypes used as nouns may be embedded using <<..>> notation in sentences. Thus:

“The type of a Port used as a <<flowport>> ..”

“.. blocks may be logically wrapped by Components ..”

A UML2 Class used as a systems block shall be stereotyped as a <<block>> (since the author uses a custom, 

SysML-like  profile  for  UML2),  whereas  a  SysML Block will  be  capitalised  as  though  it  were  a  true 

metaclass. Similarly, SysML Flow and Flowport shall be capitalised like true metaclasses. The distinction is 

important here, because UML2 was adapted by the author for systems engineering using a custom profile 

with SysML-like stereotypes long before the Magicdraw UML SysML1.0 profile was used.

The words class and interface are written lower-case when referring to Java source, whereas UML Class and 

UML Interface are UML elements (which correspond to Java under reverse- and forward-engineering).

 3.2 Flowport notation for systems engineering in UML2

Already with the UML2 Port one can achieve a degree of PBSE, however both the lack of explicit support 

for indication of flow direction, and the notational need to distinguish software ports from systems ports, 

present a significant challenge, so a notation was developed to assist these distinctions, which notation was 

tuned to also work well with Java5. Most of the work presented here precedes the author's awareness of the 

the SysML effort [3]. 

The following notation for flowports was found to read well in UML2 diagrams and to map well to a Java 

implementation, although it does break with Java coding convention in some respects, especially concerning 

use of lower-case class and interface names, used here to indicate <<flow>> types and <<flowport>> types.

Flows are formally stereotyped as <<flow>> types and are written in lower case thus:

 air: atmospheric air flow (a special case of a gas flow)



 n: abbreviation of 'neutron beam flow' for brevity in the NBI context

The base port notation convention (without a specific <<flow>> type) is (see also Figure 2):

 p$ / p$_:  abstract flowport interface and default abstract implementor class

 i$ / i$_:  <<in>> flowport interface and default implementor class

 o$/ o$_: <<out>> flowport interface and default implementor class

 io$ / io$_: <<in-out>> flowport interface and default implementor class

The rationale for the notation is as follows:

1. UML Classes are used for <<flow>> types rather than, for example, UML DataTypes - to assist 

correspondence with reverse-engineered port classes implemented in Java in the Bragg systems 

engineering framework.

2. The lower-case first letters (i,o,io,air,n) help distinguish the <<flow>>s and <<flowport>>s 

from other engineering elements (software engineering classes and systems enginering blocks).

3. The '$' after the <<flowport>> type announces that it is a <<flowport>>, with the <<flow>> type to 

follow (see below for examples with named <<flow>> types)3.

4. The trailing underscore '_' means here default implementor class, a convention used throughout the 

author's software engineering frameworks. It combines well with the common Java practice of using 

a trailing underscore for private variables, thus:

private Thing_ thing_; //trailing underscore and explicit type

public Thing getThing() {

if (thing_== null) {

 thing_ = new Thing_(); //explicit reference to class4

 // configure the thing

}

return thing_;

 }

It is also far more concise than other popular notations such as Thing/ThingImpl (which quickly 

makes UML diagrams hard to read, especially when used for port types), or IThing/Thing 

(which can confuse scientists not familiar with UML, and the 'I' may be confused with in/input).

Although of interest to the targeted Bragg software simulation and control framework in  Java, the UML 

Interfaces of flowports do not play a significant role in the aspects of systems engineering of NBIs presented 

here, so in what follows usually only the flowport implementor Classes will be shown, and they will simply 

be called flowport types, with the understanding that an implementor Class is always used as a <<flowport>5.

3 It has not been observed that the '$' used for flowports clashes with its use for inner classes in Java when compiled.

4  Of course in many cases one does well to instead obtain the implementation from an injected factory.

5  While interface types for ports are permitted they are not used in this work.



Ports may be notationally parametrised. Given a <<flow>> quantity of template parameter flow class 't' the 

parametrised flowport interfaces and classes are:

 i$<t>_: <<in>> flowport class

 o$<t>_: <<out>> flowport class

 io$<t>_: <<in-out>> flowport class

So for neutron beam flows (abbreviated as <<flow>> 'n') we have (see also Figure 3):

 i$n_: <<in>> neutron  beam flowport class

 o$n_: <<out>> neutron  beam flowport class

 io$n_: <<in-out>> neutron  beam flowport class

The base flowports types may be parametrised (”templated”) using Java5 generics  [5], and the Bragg NBI 

ModelServer framework offers generics support throughout. However, the base implementors cannot model 

specific  physical  flow  properties  (such  as  the  velocity  distribution  of  a  neutron  beam,  or  pulse 

characteristics); for that explicit <<flowport>> types for specific <<flow>> types are required6.

In many cases  <<flowport>>s may remain anonymous (or  the names need not  be shown) as the above 

notation reads well when no name is offered; in other cases the role may be indicated explicitly to suggest 

the transformation of neutron beam flow caused by a block: an out <<flowport>> from an attenuator might 

be named 'oAttenuated'. Since neutrons are the primary <<flow>> of interest for NBI modelling, the 

type of the neutron <<flowport>>s is often omitted in diagrams, making them clearer for NBI scientists.

 3.3 Logical and graphical support for systems engineering and software 

engineering using block <<wrapper>> and <<part wrapper>> Components

One must take care to distinguish “systems engineering” (using UML2 Classes stereotyped as <<block>>s or 

SysML1.0 Blocks7)  from “software  engineering” (as used in the Bragg ModelServer  for  simulation and 

control). Especially UML Classes reverse-engineered from Java classes need not correspond exactly with the 

SysML Blocks they represent/simulate.

1. Example: a SysML Block may have value properties representing physical quantities, each with a 

rich value type with a physical unit and dimension, and SysML provides for notations showing the 

default values and units of such rich value properties specific to a part property typed by a Block. In 

Java, this may be handled by a rich Value class, however the default for each physical value field 

must be handled otherwise, such as via a class-level (static) constant.

2. Example: a SysML Block explicitly supports SysML Flowports with direction and provides notation 

for  that  purpose.  Related Java classes may (as  illustrated above) use other  notational  devices  to 

6 It was also found that the reverse-engineered, parametrised generic port notation in Magicdraw UML did not appeal to 

most neutron beam scientists not familiar with UML, whereas an explicit port notation was more readily understood.

7 SysML implemented in a particular tool may also be modelled using a profile with a <<block>> stereotype.



handle directional flowports, as in the flowport package from the Bragg systems engineering Java 

framework.

3. Example: a Java interface/implementor pair corresponding to a SysML Block may have additional 

attributes  and  operations  required  for  participation  in  a  software  framework,  which  features  are 

unknown to the SysML Block in the UML/SysML model.

Such situations  can be addressed by  logically  wrapping UML classes and SysML blocks with a UML2 

Component  for  each  abstracted8 real-world  system  block  being  modelled,  simulated,  controlled,  and 

animated. Such a block <<wrapper>> Component also provides for powerful logical views and graphical 

organisation of diagrams, without affecting the underlying physical packaging of the systems engineering 

blocks and/or software engineering Classes.

Two cases will be considered here:

1. Case: UML2 adapted for systems engineering:

 1 (abstracted) real-world system block with Java-friendly name.

 1 block <<wrapper>> Component (UML2) named after the real-world block.

 1  reverse-engineered Class (UML2) -  and its  matching Java class  file  -  that  realizes  its 

paired interface. This will be called here the  default block <<implementor>> Class. It is 

named after the block with a trailing underscore '_'.

 1 reverse-engineered Interface (UML2)  - and its matching Java interface file - for its paired 

<<implementor>>.  This will be called here the block interface. It is named after the block.

In this case the <<implementor>> Class may be also stereotyped by a custom UML2 <<block>> 

stereotype, and the distinction between “systems engineering” and “software engineering” is blurred 

(yet mitigated by the use of the block <<wrapper>> Component for carrying systems engineering 

data).

2. Case: as above, and with additional SysML Block. Many SysML tools offer a <<block>> stereotype 

in a SysML profile, so in this case the <<implementor>> Class is not stereotyped as an <<<block>>, 

to distinguish “systems engineering” on the SysML Block from “software engineering”.

In both cases the Java  implementor-and-interface pair may have been forward-engineered from UML (if 

only as stubs) or they may have been entirely hand-coded; they are at least reverse-engineered “back into 

their block wrapper”. The block <<wrapper>> Component recipe is illustrated in Figure 6.

The block <<wrapper>> Component recipe is made possible by the fact that UML2 Components do not 

“steal ownership” of UML Classes. Therefore the block wrapper Component can graphically contain many 

Class elements without affecting the underlying package and model structure. 9

The block <<wrapper>> Component may also be used to logically wrap any additional reverse-engineered 

8 The real-world block is considered an abstraction; it is not represented at the atomic level, it is afforded a geometrical 

boundary and a name and identity, and although bits of paint may fall off it during its lifetime it preserves its identity.

9 The resulting Realizations can be used to trace which elements are wrapped by a given block wrapper Component.



helper Classes used by the implementor block, to encapsulate a  logical class collaboration. This strategy 

emphasises the nature of the <<wrapper>> as the boundary of a “systems machine”, the contents of which 

are simulated by collaborating software classes. Since <<wrapper>> Components do not steal ownership, 

helper Classes may participate in any number of <<wrapper>>s.

The block <<wrapper>> Component may be further used as the container for tagged systems engineering 

concepts and development data to supplement reverse-engineered information, and/or that specified on a 

SysML Block.  UML Comments  stereotyped  according  to  systems  engineering  document  types  may  be 

organised this way. In this recipe, the block <<wrapper>> has the most immediate relationship to the real-

world block it models, and SysML Blocks and software engineering Classes are subservient to it, they serve 

to  achieve  the  goals  specified  via  the  <<wrapper>> and its  contained  systems engineering  <<design>> 

Comments.

In addition, a <<part wrapper>> Component may be used in block wrapper class diagrams to logically and 

graphically contain information and elements related to the specific use of a block as a part within an owning 

block's context. In this case the <<part wrapper>> is contained in the <<wrapper>> of the Block that owns 

the part. This is the usual case for reuse of blocks as parts of other blocks, when the reuse context is not 

preempted. In other cases, a particular <<block>> Class or SysML Block may never be intended for use 

outside a preempted context, in which case its <<wrapper>> may be used (once only) and contained within 

its owning block, and no <<part wrapper>> is required, because the part only ever has one context. This 

subtle distinction will be illustrated throughout the model diagrams following.

In practice – once one knows the rules – both block <<wrappers> and <<part wrappers>> are easy to use, 

and  provide  enormous  graphical  assistance  when  constructing  complex  systems  diagrams,  as  they  help 

quarantine regions within the diagram from each graphically, and help one to build progressively graphically 

contained  hierarchical  systems,  making  diagramming  more  robust,  and  they  provide  for  very  useful 

navigation points using Magicdraw UML's hyperlink facility.10.

The block <<wrapper>> Component also appears in this work in UML Composite structure diagrams and 

SysML Internal Block Diagrams (IBDs). This recipe provides a convenient container for Comments that 

refer to parts of the wrapped block, and it provides an additional context for each block system, so that 

relationships to other elements in the entire system can by shown using class diagram notation outside the 

block  <<wrapper>>  Component  and  its  wrapped  block  (which  is  shown  as  a  composite  structure). 

Additionally, having the block <<wrapper>> Component provides for an additional navigation point to the 

wrapped  block  class  diagram.  This  unusual  recipe  has  proved  very  convenient  and  powerful,  both 

graphically, and for organising systems engineering Comments and models. Diagram frames are not used 

here in UML Composite Structure Diagrams and SysML IBDs, as they prevent reference to other blocks in 

the system.

10 The wrapper Component practise is highly recommended, and the author now uses this recipe thoughout all of his 

UML-based analysis and software engineering design work, as will be illustrated in future papers.



 3.4 The BlockModel/BlockPackage engineering recipe

Figure 4 also illustrates a recipe for collecting all systems engineering elements per real-world abstracted 

block in a  <<BlockModel>>,  together  with  its  block <<wrapper>> Component,  information on systems 

engineering artefacts (such as design manuals, maintenance data, etc.), images11, and a contained Model for 

collecting instance specifications that may be used to define the part-specific defaults12 for (re)configuration 

of parts of the Block (the values of which will override any class-level (static) defaults of the physical values 

of the Block type of the part Property).

The <<BlockModel>> is complemented by a software engineering <<BlockPackage>>, which contains its 

related interface-implementor Java pair, and other software engineering artifacts. This recipe has been found 

to afford enormous organisational and graphical convenience, and it is being progressively introduced into 

the Bragg NBI models13. Each real-world block is well worth a relatively cheap UML Model/Package pair.

4 Modelling examples: the OPAL neutron beam instruments

Examples of applications of the modelling recipe to some NBIs of the OPAL research reactor[1] are now 

presented. The detailed embedded UML Comments and figure captions are the primary explanation, a brief 

overview is provided here.

Figure 5 shows the “anatomy” of a fictitious neutron bunker conditioning bunker as a UML2 Composite 

Structure Diagram with custom <<flowport>> notation. The Comments serve to decribe the elements of the 

diagram,  conventions,  and  the  diagramming  recipe  (not  an  NBI).  Figure  6 shows  the  same  fictitious 

conditioning bunker as  a wrapped block class diagram (equivalent to a SysML Block Definition Diagram 

with additional use of Component wrappers). Please note the use also of <<part wrapper>> Components and 

the way block classes are organised to reflect the beamline topology and reflect their usage context as part 

properties.

Figure  7 shows  the  top-level  UML2  Composite  Structure  Diagram  of  the  Platypus  reflectometer  [1], 

including <<design>> and <<proposal>> Comments elicited from the original proposal document and design 

manual. The high level bunker assembly containing the neutron beam choppers (which chop the beam into 

pulses for this Time-Of-Flight (TOF) machine) is shown in Figure 8. Note the relationship of the structured 

block to other “surrounding” blocks in the system, and that one component is both inside and outside the 

bunker. The same bunker in shown as a wrapped block class diagram in  Figure 9. Note the use of both 

11 Magicdraw UML now supports images diagrammatically, and this author would like to cast a vote to the OMG for 

Images with URL as true UML elements that can be contained and reused like UML Comments.

12 Consider a simple block with only physical values (no parts) and class-level (static) default values for each value. 

Consider then a structured block with a part typed by that simple block that (re)configures the part's physical values 

(only) with defaults specific to the part (usage context), and unique to the context of the owning structured block, 

which defaults shall  be  called here  part-specific defaults.  Such  part-specific defaults offer  the simplest form of 

progressive reconfiguration of parts in a progressive usage context, and are always to be applied to top-level (not 

deeply nested) parts within a Block, and thus do not require property-specific (sub)types of the part's block type.

13 Some of the diagrams here show blocks not yet employing the BlockModel/BlockPackage system.



<<part wrapper>> Components for reused block types, and the use of block <<wrapper>> Components for 

blocks that are particular to the Platypus NBI. Such diagrams are considered expert “software engineering 

views”, and need not usually be used in discussions of the system with NBI scientists.

In  Figure  10,  Figure  11,  and  Figure  12 the  reader  is  taken  through  some  of  the  assemblies  of  a 

monochromation system, which is shared with variation by the OPAL diffractometers such as Echidna (High 

Resolution Powder Diffractometer), Wombat (High Intensity Powder Diffractometer), and Kowari (Residual 

Stress Diffractometerr) [1]. The entire monochromation system down to the motorised stages is shown as a 

wrapped block class  diagram in  Figure  1314.  The motors  of  the  motion stages  are  not  shown (they  are 

featured in other diagrams for the reusable motion-stage blocks, and will be the topic of a future paper).

5 The Bragg NBI ModelServer

The NBI models thus engineered under PBSE are incorporated into a Java+XML  ModelServer system, 

which acts as a distributed, multi-client, control system façade15 that integrates low-level device interactions 

(via a real or  simulated control system) into high-level instrument components that support recursive control 

and derived, controllable, physical subsystem values. The ModelServer system will form the subject of a 

dedicated following paper, and thus will only briefly be introduced here.

The  au.gov.ansto.bragg.base packages  used  by  the  Bragg NBI  ModelServer system  are  not 

restricted to NBIs, or even to scientific instrument modelling. They provide support for a reusable Boundary 

– Control -  Entity – Database architecture, as well as standardised logging and debugging channels, and 

encapsulated introspection/reflection on entity beans, to promote consistency across software systems of the 

Bragg Institute.

The au.gov.ansto.bragg.syseng packages of the Bragg NBI ModelServer system isolate the 

systems engineering aspects. They provide support for:

1. SysML-like “deep/rich” physical values with metadata such as units and ranges

(including support for Java5 generics).

2. interpretation of physical instrument components as SysML-like blocks with simple attributes, rich 

physical values, references, parts, and ports, and corresponding filtered introspection support.

3. integration of low-level sensor-actuator devices with high-level physical instrument blocks 

(subsystems, assemblies, subassemblies, and unit/atomic blocks driven by real devices).

4. injection of real or simulated control via a configurable controller factory.

Thus, the Bragg Institute's syseng packages are intended as a target for forward-engineered instrument 

systems, although to date a combination of forward engineering of stubs and hand coding has been used.

(See also below for experiences with EMF for generation of complete Java components.)

14 Readers are invited to consider the complexity handled by this one diagram, which is only one logical stage, of one 

instrument, being 1 of 9 at the OPAL facility. The block <<wrapper>> Component is your good friend for such work.

15 By comparison with the GoF [9]façade pattern the ModelServer hides the specifics of the low-level device control 

system  so that clients may interact with a uniform API in terms of physical components and derived logical channels.



A range of ModelClients are being developed: a diagnostic, multi-column SWT TableTree desktop client for 

monitoring  and  control;  a  Java3D  AnimatedModelMonitor;  a  remote  WebModelMonitor;  and  an  event 

logging client.  An RMI network partition supports remote clients with distributed notification and callback 

subscription. Progress is being made towards a complete instrument simulation and control environment, 

including  remote  client  support,  multi-client  support,  animation  using  a  Java3D  client,  and  geometry 

specification directly within the UML2/SysML model.

The ModelServer is designed to integrate well with any injected device-level control system (or simulation) 

and to offer value-adding services to OPAL's GumTree [7] integrated scientific workbench.

 5.1 Encapsulation of blocks in the Bragg NBI ModelServer

The primary domain objects of the NBI ModelServer are instances of hierarchical NBIs modelled as systems 

engineering blocks, starting from high-level logical stages of the instrument through the physical assemblies 

and subassemblies, down to the lowest-level indivisible “atomic” blocks, with values bound to low-level 

controlled devices. The ModelServer explicitly encapsulates blocks in filtered, introspected form, exposing 

instrument blocks to clients as encapsulated SysML-like form (see also Figure 14):

1. (simple) attributes: obtained by filtered introspection on the properties of the Block, which is in 

turn a Bragg EntityBean (a.k.a. BraggBean). These are the non-physical attributes associated with 

enterprise software engineering, and are not usually of interest during systems operation.

2. (rich) physical values: representing quantities with metadata such as units, physical dimensions, 

and ranges: these may be further categorised as:

 controllable: and thus associated with a sensor-actuator device pair (in which case a 'set' 

is a control command redirected through a simulated or real device controller obtained 

from an injected controller factory). These can be in turn sub-categorised as:

 directly  controlled: bound  to  a  single  low-level  logical  device,  such  as  the 

encoded rotation angle of a rotating motions stage actuated by one motor, which 

receives a “logical” set command as an angle value that is translated by a given 

control system to motor steps using a specific driver.

 derived:  controlled by distribution and/or delegation of the control request to 

multiple low-level logical device (or to lower level derived, controllable values), 

orchestrated by recursive control [4], such as setting the collimation length of a 

neutron beam by coordinating multiple optical elements, subject to a complex 

computation including machine geometry and optical principles.

 readable: encoded, however not driven (such as the count value of a beam monitor).

 editable: a non-encoded physical variable of the machine, such as the horizontal position 

along the beam line of the  moveable slits of the OPAL powder diffractometers (Echidna 



(HRPD) and Wombat (HIPD) [1]), which are fixed by screws. The value may be edited 

directly in the model without going through the control system.

 constant: such as fixed geometrical dimensions of the physical blocks, configurable only 

through Java defaults, or by loading from an instrument XML instance file.

3. parts: SysML-like part Properties that are typed by blocks.

4. references: typed  by  blocks,  seldom  used,  although  they  can  provide  useful  navigation  paths 

through a model in a client using hyperlinks to the referenced block.

5. flowports: SysML-like <<flowport>>s with a <<flow>> type, direction, and descriptive name.

 5.2 SWT TableTree ModelClient

The primary visual client for the NBI ModelServer is a multi-column SWT TableTree client, which provides 

a hierarchical view of an instrument, from its top-level  logical stages through its physical assemblies and 

sub-assemblies down to its physical unit/atomic blocks, the values of which are driven by low-level logical 

devices. The TableTree client's structure, values and state are completely generated from and bound to the 

underlying  model  instance  using  introspection  and  callback  subscription,  and thus  it  is  a  debugger-like 

diagnostic of the model instance within the ModelServer.

The TableTree ModelClient is shown in Figure 14 for the Platypus neutron reflectometer at OPAL [1]. The 

SWT ModelClient is designed for standalone operation, and for integration with the GumTree [7] scientific 

workbench, which is built on the Eclipse Rich Client Platform (RCP)16.

The architecture explicitly exposes the model instance encapsulated in SysML-like fashion; each block node 

in the TableTree contains group nodes collecting block features to directly reflect the filtered introspection. It 

is the underlying architecture that encapsulates the system introspectively in a SysML-like fashion, the client 

merely  re-presents  this  form,  exploiting  the  additional  horizontal  columns  in  the  TableTree  to  present 

operational parameters for monitoring and control17. Such model clients can and should be simultaneously 

“rich and thin”.

6 Reverse- and forward-engineering of UML2 and SysML models

In  practice,  forward-engineering  of  completely  functioning  Java  components  for  the  NBI ModelServer 

system from UML2 models proved difficult.  It should be noted, however, that the PBSE UML2 models 

proved of enormous value even without achieving this ambitious aim. Some of the hurdles included:

1. errors in the modelling of UML2 composite structures and ports in Magicdraw UML 11.0 to 12.1 

(now fixed in Magicdraw 12.518)

2. difficulties in specifying and generating sufficiently complex behaviours for operations

16 http://www.eclipse.org/rcp

17 The author Dr D. Kelly and his colleague Dr N. Hauser were pleased to observe the serendipitous correspondence of 

structure and names from the Bragg institute system to the SysML specification on first reading it in  2006.

18 personal communciation, Nerijus Jankevicius.



3. difficulties in handling mapping of Java5 generics from UML to the templated target framework

4. difficulties in specifying bindings between low-level logical devices and physical components.

Instead - with NBI commissioning immanent - it was decided to focus on forward-engineering of Java stubs 

from  the  UML2  models  using  Magicdraw  UML's  basic  generation  facilities,  and  consequent  reverse-

engineering of completed Java classes (after hand-coding to complete the generated Java stubs) into UML 

Class models, which - when combined with the block wrapper Component strategy proved quite practical.

7 Experience with the Eclipse Modelling Framework (EMF)

A systematic  investigation  of  EMF  as  a  candidate  for  forward-engineering  NBI  models  to  Java  was 

undertaken, with mixed results. While the in-built support for XML Schemas corresponding to the generated 

Java proved very useful, the following aspects of EMF (as assessed in late 2006) proved a significant hurdle:

1. EMF did not explicitly support ports, which given the PBSE context was prohibitive (ports were 

handled only as properties, so a degree of intervention in the generated Java was required to 

achieve port-awareness, which proved impractical).

2. EMF did not support connections between ports of parts or between parts, which completely 

prohibited its use for PBSE.

3. EMF did not explicitly support deep values with units and metadata, which given the physical 

systems engineering context was prohibitive.

4. EMF did not (yet) support Java5 generics, and thus was not easily combined with the Bragg syseng 

packages.

A decision was made to abandon EMF in favour of  more pragmatic  software  and systems engineering 

techniques to afford timely commissioning of software for the OPAL NBI program. A reassessment of EMF 

for PBSE may be performed throughout 2007/2008.19

8 Towards Port-Based Systems Engineering with the Magicdraw UML 

SysML plugin

Whereas  the  developmental  Magicdraw UML SysML1.0  plugin  was  missing  some  features  crucial  for 

practical systems engineering of scientific instruments like NBIs , the immanent SysML1.1 plugin includes 

many major improvements20, and is being assessessed by this author for The Bragg Institute by application 

to  the  same NBIs modelled previously  here  in  UML2 with  custom stereotypes  (see a  simplied SysML 

Internal Block Diagram for the Platyus reflectometer in Figure 15). 

Initial trials are proving very promising; in particular the flowport notation reads very well. The ability to 

assign and display default physical values specific to a part property (that is typed by a Block) within its 

unique owning Block's context makes inclusion of systems engineering data, and progressive configuration 

19A proposal has been done on the Eclipse Modeling Project about the creation of a SysML Metamodel as a new 

component (like the UML2 component). pers.communication, SysML Forum, Raphaël Faudou 31 May 2007

20 Personal communciation, Nerijus Jankevicius.



of  complex  assemblies,  much  easier;  using  tagged  values  for  such  in  UML2 was  never  a  satisfactory 

solution.

There is, however, a real need for property-specific type support to afford flexible reconfiguration of deeply 

nested  parts  in  complex  assemblies,  a  case  which  does  occur  in  practice  (consider  the  complex 

monochromation assemblies in Figure 13 reused in three NBIs, each with its own device binding data and 

other variations). In fact explicit subclasses per part (as opposed to anonymous subclasses per part) created 

just to carry such deeply nested configuration data are used in the ModelServer Java framework; and an 

injectable part configuration factory approach is being implemented to manage this case, and as a target for 

forward-engineering from property-specific type notation from SysML models.

Without a facility to forward-engineer SysML blocks to a framework, such a SysML plugin offers only 

improved modelling and notational support (and thus better communication with stakeholders). The author 

is thus commencing development of a further plugin for the Magicdraw UML tool for forward-engineering 

of blocks to the Bragg ModelServer framework for generation of “executable” (simulatable, animatable, 

controllable) blocks for a wide range of systems engineering and scientific instrument applications.

The block <<wrapper>> Component strategy will assist the migration to (inclusion of ) SysML blocks in the 

existing NBI models,  and the binding of SysML blocks to forward-  and reverse-engineered Java block 

counterparts.

9 Conclusion

This has been a very demanding and ambitious body of work,  far  more difficult  than “regular  software 

engineering”  and  in  hindsight  one  might  well  have  categorised  the  entire  UML-driven  instrument 

engineering strategy as “high risk”, given the state of the tools chosen at commencement of the project in 

Oct 2006.. Whereas the Java IDEs used have coped very well with this scale of modelling across an entire 

neutron beam facility, the performance of the Magicdraw UML tool, and the memory and the CPU resources 

of the desktop computers used, were pushed to their limits21.

The  complexity  of  the  interrelationships  between  the  UML  models  and  the  Java/XML  ModelServer 

framework  is  significant.  Systems  engineering  of  complex  real-world  instruments  with  UML is  not  an 

approach that should be undertaken lightly by those who are not already very experienced with UML on a 

wide  range  of  software  engineering  and  systems  engineering  tasks,  including  experience  with  many 

established, well tested, non-UML-based systems engineering and animation tools.

However, enormous progress has been made on all fronts during the period Oct 2006 – May 2007 when this 

work was performed. The Magicdraw UML tool is far more stable, usable, and conforming to the UML2 

specification now than when this project was commenced. And the SysML effort is providing a common 

language  and forum for  communicating  known solutions  and  distilling  known problems in  UML-based 

21 My patience with the robustness of the (then) Magicdraw UML tool under containment of large NBI models, and my 

bosses' patience with me and my strategy, were likewise also often pushed to their limits and beyond !



systems engineering.

The difficulties presented by this scale of systems engineering with UML were mitigated by the modelling 

and  diagramming  recipes  presented  here,  such  as:  the  use  of  notation  to  distinguish  flowports  from 

controlports and dataports; the use of wrapper Components for powerful graphical and logical grouping; the 

use of text elicited from (parsed from) technical documents and design manuals directly into the models and 

diagrams. Above all, it is crucial that one has the “grounding force” of a real-world, controlled, physical 

instrument or machine at hand. Systems engineering with UML/SysML cannot be performed in a vacuum.
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Figures

Figure  1 Convention  and  notation  for  Class/Interface  pairs  and  associated  wrapper  Component.  The 

convention  is  employed  throughout  the  Bragg  ModelServer  software  architecture,  and  can  likewise  be 

applied to systems engineering blocks.

Figure 2 Flowport notation for base interfaces and classes for port-based systems engineering with UML2 

and Java implementation.

Figure 3 Neutron beam instrument flowport notation and example neutron instrument blocks with flowports.

Figure 4 Logical/graphical block wrapper Components and the BlockModel/BlockPackage system.

Figure 5 Example: UML2 composite structure diagram (systems engineering view) of a fictitious neutron 

beam conditioning bunker, showing the “anatomy” of neutron beam instrument assembly blocks with parts, 

custom UML2 notation for neutron and air flowports, and control ports.

Figure  6 Example:  wrapped  class  diagram  (software  engineering  view)  of  a  fictitious  neutron  beam 

conditioning bunker, showing a top-level block <<wrapper>> Component for a conditioning bunker and its 

contained <<part wrapper>> Components, which graphically and logically organise the diagram and design 

comments within their respective block or part contexts (corresponding to part properties).

Figure 7 Model: Top-level UML2 composite structure diagram (systems engineering view) for the Platypus 

reflectometer. Connections from the bunker vacuum port and chopper control port to the boundary are not 

shown,  and  some  other  vacuum  and  control  ports  are  omitted.  The  <<proposal>>  and  <<design>> 

Comments are elicited from the actual documents for the instrument.

Figure 8 Model: Bunker shield assembly for the the Platypus reflectometer as UML2 composite structure 

diagram with flowport notation. The <<block>> class is wrapped by a block wrapper Component that is 

hyperlinked to a block wrapper class diagram for the block. Other <<block>> classes are shown to provide a 

usage context and alternative navigation points. Physical values (part-specific defaults) are not easily shown 

on the parts. The limits of the port-based modelling and assembly interpretations are challenged by a post-

bunker guide that is part inside and part outside the bunker.

Figure 9 Model: Bunker shield assembly for the the Platypus reflectometer as wrapped block class diagram. 

Many of the parts are used only once; their blocks are specifically designed for this one-off application, and 

so they do not require part wrapper Components, and their block wrappers Components are contained by 

their unique block wrappers. Other parts are typed by reusable generic blocks, and so they are given specific 

part wrapper Components.

Figure 10 Model: UML2 composite structure diagram for the monochromation logical stage of the neutron 

diffractometers of the OPAL NBIs, showing beam-centric organisation of the system dictated by neutron 

flow ports (as opposed to assembly-centric organisation). The monochromator shield assembly is screwed to 

a concrete floor, the monochromator assembly (including goniometer) rotates with a monochromator shield 



drum assembly (which is partly inside and partly outside of the fixed monochromator shield assembly), and 

the beam passes through both “fixed” and “moveable” parts.  The use of flowports helps to organise the 

model according to the logic of the beam. Note the difficulty in reflecting the horizontal beam path concisely. 

Note also the lack of direction on the typed “rotates with” and “is mounted inside” connections compared 

with the directed association names.

Figure  11 Model:  UML2  composite  structure  diagram  of  the  monochromator  assembly,  corresponding 

roughly to the view from above (the UML diagram can only at best indicate topology, not geometry).

Figure 12 Model: UML2 composite structure diagram of the monochromator stage assembly with motorised 

goniometer rotation, tilt, and translation stages, which are driven by encoded devices. Although named after 

the motorised, controlled values, these are still only the physical blocks. In fact, the upper motion stages will 

move  (they  rotate)  when  the  rotating  device  of  the  lowest  stage  (mom)  is  activated,  even  though  the 

controlled variables of the upper stages are not even driven. This illustrates an important difference between 

a low-level logical device view and a physical block view with geometry and relative assembly.

Figure 13 Model: wrapped block class diagram (software engineering view) for the entire monochromation 

logical stage, including deeply nested motorised motion stages of the monochromator's goniometer. Only 

block <<wrapper>> Components throughout (no <<part wrapper>> Components are used), since all blocks 

are designed for this monochromation context only, no reuse in other assemblies is intended, except for the 

reused motion stage blocks, which are not yet separately wrapped here. To include content specific to each 

motion stage part they would need to be wrapped in individual <<part wrapper>> Components.

Figure  14 SWT TableTree  ModelClient  showing  an  instance  of  the  Platypus  reflectometer  model  and 

SysML-like node groups: attributes, values, parts, ports. (Controlled values are not synched here with the 

live control system.)

Figure 15 Simplified SysML version of the Platypus neutron reflectometer model, with SysML flowport 

notation for neutron beam and air flows, control ports in UML2 notation, rich values with physical units, and 

part-specific  default  values  assigned  according  to  the  usage  context.  Magicdraw UML's  SysML1.1beta 

plugin was used.
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